Evidence-Based Practices Estimates

ESTIMATING POPULATIONS FOR FSP, IPS, and CSC IMPLEMENTATION

PRESENTED BY

HAYLEA HANNAH, PHD, MSPH SENIOR EPIDEMIOLOGIST DAWN KAISER, LCSW, CPHQ SENIOR DIRECTOR

AMIE MILLER, PSY.D, LMFT EXECUTIVE DIRECTOR

CSC for FEP Model & Considerations for Interpretations of Estimates

For Uninsured + Medi-Cal Eligible individuals 12-64 years old

Webinar Series

0

Introduction & Methods Overview - October 28, 2025

2

FSP and IPS Model - October 31, 2025

3

Justice-Involvement, ACT/FACT Model – November 4, 2025

4

CSC for FEP Model & Considerations for Interpretation of Estimates – November 6, 2025

You are here

Agenda

- Background and EBP Overview
- Methods for Base Population
- CSC Model Overview
- CSC Model Input Studies
- Review of results CSC for FEP
- Considerations for interpretation of estimates
- Webinar close out
- Q&A

Housekeeping

- Slides will be shared after webinar
- Webinar <u>will not</u> be recorded
- Please add questions to the Q&A
- We will pause throughout for questions

Keep in mind...

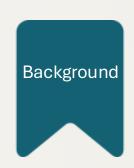
This will get complicated....

Because estimating clinical need and planning new services using publicly available data is complicated!

Model Objectives

To assist BHPs with completing their BHSA Integrated Plan, DHCS commissioned CalMHSA to estimate Medi-Cal + uninsured populations that may have a clinical need for the following:

Full-Service Partnerships (FSP) and the following sub-categories within FSP:

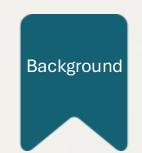

- Assertive Community Treatment (ACT)
 - Forensic Assertive Community Treatment (FACT)
- FSP Intensive Case Management (ICM)
- Individual Placement and Support Supported Employment (IPS)
- Coordinated Specialty Care for First Episode Psychosis (CSC FEP)

Additional Ask

Estimate justice involvement among FSP populations

Estimating clinical need ≠ who will access the service

BHSA is Designed to Serve a Broader Population


People eligible for Medi-Cal

People who are uninsured or not eligible for Medi-Cal

BHSA Expansion

BHSA and BH-CONNECT are Complementary

Similar mission

Designed to meet the behavioral health needs of the most vulnerable Californians living with significant behavioral health needs

Serve the same priority populations

Focused on bolstering services for:

- People experiencing or at risk of homelessness
- People involved in the justice system
- Children and youth involved in the child welfare system

BH-CONNECT – Medi-Cal Only BHSA – Medi-Cal ++

Strengthen investments in housing & workforce

BH-CONNECT allows for federal funding to support the workforce, while BHSA provides additional county-level and statewide investments

Source: DHCS BHSA and BH-CONNECT EBP Overlap (Updated August 2025)

CSC for FEP

EBP Overview

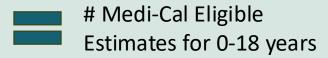
Target Population

People presenting with or at risk for FEP

Source: National Alliance on Mental Illness

Medi-Cal & Uninsured Population Estimates

The Challenge


- Age ranges are broad in available data for Medi-Cal Enrollment (0-18, 19-44, 45-64) and Uninsured (0-18, 19-64) populations
- Incidence of FEP varies significantly by age (12-17,18-25, 26-40, 41-64)

Approach: Proportional Distribution Method

Apply each county's general population age distributions (from <u>CA Department of Finance 2024 projections</u>) to Medi-Cal enrollment and Uninsured estimates

Formula

Medi-Cal Eligible 12-17 years of age

12-17-year-olds in County Population

0-18-year-olds in County Population

Methods for Base Population

Example: CSC Base Populations

Goal: Estimate number of uninsured individuals 26-40 years old in California

Start with Uninsured Population 19-64 in California: 1,191,137

2

Get CA Population Proportions for the proportion of 19-64 year olds that are 26-40 years old

- Ages 26-40 in CA: 8,246,067
- Ages 19-64 in CA: 23,515,321
- Proportion: 35.1%

Apply proportion to uninsured population estimate: $1,191,137 \times 35\% = 416,898$

Any Questions?

CSC Model Overview

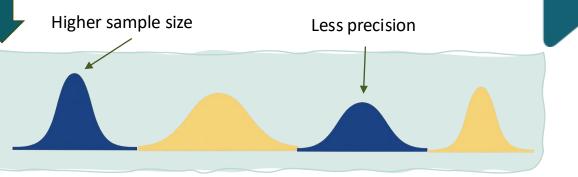
Challenges

- Several studies estimating incidence of FEP by age – which to choose?
- Studies with different settings, populations, payer mix

Solution

Literature-based FEP Incidence Rates

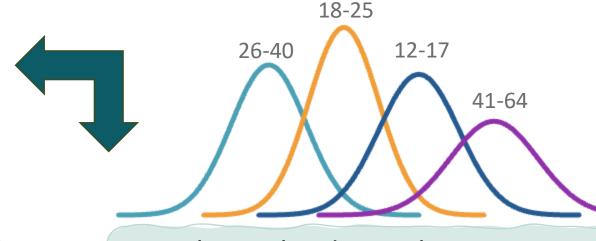
Model to combine study estimates


Conduct literature review on rates of FEP by age group

Targeted on Medicaid and community behavioral health populations

CSC Model Overview

Observed FEP rates vary by study


- Studies are conducted in different populations
- Studies have larger or smaller sample sizes

Model designed to weight by sample size and precision

Final, weighted rates by age group
Rates applied to estimated population uninsured
+ Medi-Cal for each age range

- Standardize incidence rates for combination: Convert all studies to annual rates per 100,000 person-years and determine percentage overlap between target age groups and study age groups
- Build the statistical model to summarize incidence rates: Use Bayesian methods to estimate FEP incidence by age group while accounting for study differences
- Generate uncertainty estimates: Conduct Monte Carlo simulations to capture realistic uncertainty
- Apply final rates to each county's age-specific estimates: Multiply rates and 95% credible intervals from the model to each age group to generate a range of expected case counts

Standardize incidence rates for combination

The Challenge with Combining Many Studies

Study	Age Range	Rate Type	Setting
Radigan et al. 2019	18-30	Person	New York Medicaid
Simon et al. 2017	15-40	Person-year	Mixed payer type
WA State Medicaid Study 2023	12-64	Person	Washington State Medicaid

Our Solution

- ✓ **Age Groups:** Distribute each study's findings across our target age groups (12-17, 18-24, 25-40, 41-64) based on how much the result overlaps with the target range
- ✓ Person-Years: Use reported rate time to calculate total observation time for proper statistical weighting
- ✓Annual Rates: Convert all rates to "per 100,000 people per year"

2

Build the statistical model to summarize incidence rates

Why "Bayesian"?

Instead of a single estimate, we get a range of plausible values with associated probabilities based on:

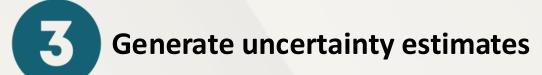
- **Prior Knowledge** (what we expect, what is biologically plausible)
- Data (what we observe in input studies)

Why "Hierarchical"?

The model has two levels:

- Level 1: Overall FEP rates by age group (the "population average")
- Level 2: Study-specific adjustments that account for natural differences between studies

Build the statistical model to summarize incidence rates



Traditional Approach

- Relies on single point estimates
- Difficult to capture variability when combining studies
- No way to incorporate prior knowledge

Bayesian Approach

- Captures full probability distributions
- Better estimates uncertainty explicitly
- Natural framework for meta-analyses
- Can incorporate prior/expert knowledge

Apply final rates to each county's age-specific estimates

Use **Monte Carlo** simulations (n=16,000) to explore all plausible scenarios given the model

- Uses the Bayesian fitted model based on input studies
- Generates new parameter values
- Creates "what if" scenarios
- Use simulation results to generate mean and 95% credible intervals

416,898 uninsured individuals who are 26-40 years old

Model rate for 26-40 years old

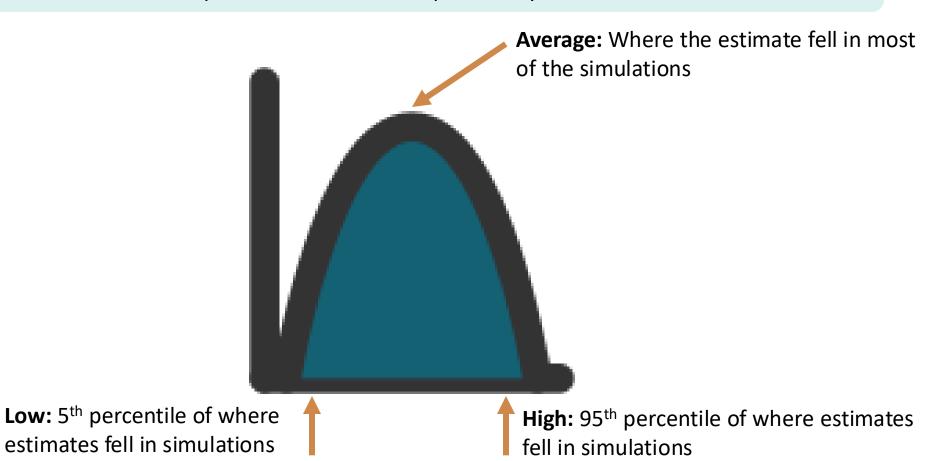
Run 16,000 times across possible range

Apply final rates to each county's age-specific estimates

Traditional Approach

Multiply mean from model by population

Problem: You only get one number and don't capture real uncertainty from input studies

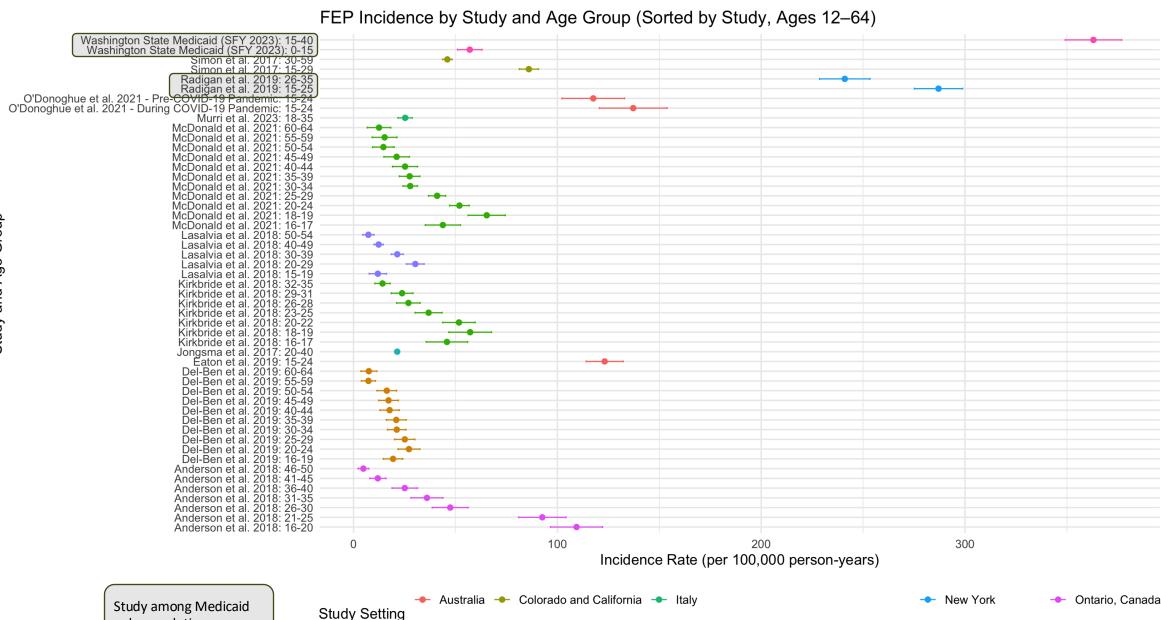

Monte Carlo Approach

- Use all plausible rates to see the full range of possible values
- Better captures study variability to generate realistic scenarios
- Explicit that there's not one "true" answer

How do we handle uncertainty?

Simulation Model Methods

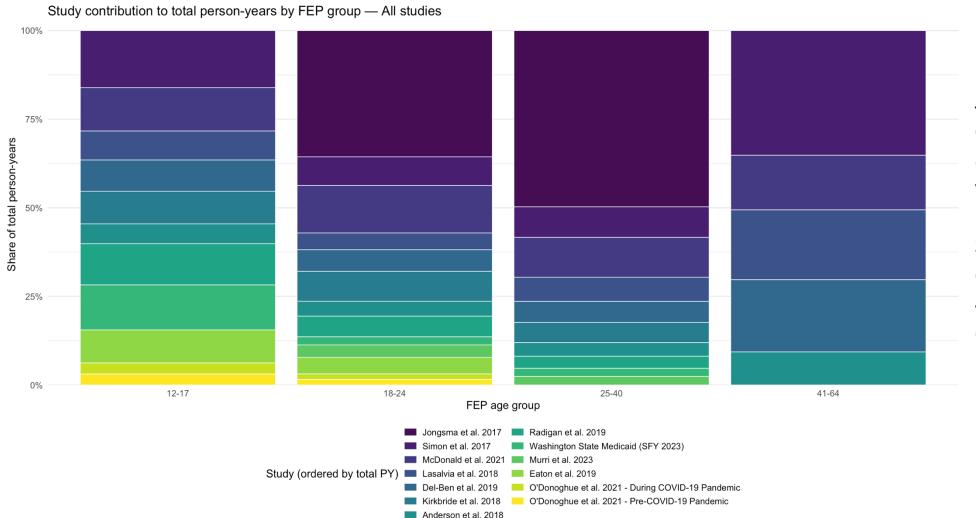
95% Credible Intervals: Based on the model and available data, estimates the range in which the value is expected to fall with 95% probability


Any Questions?

and

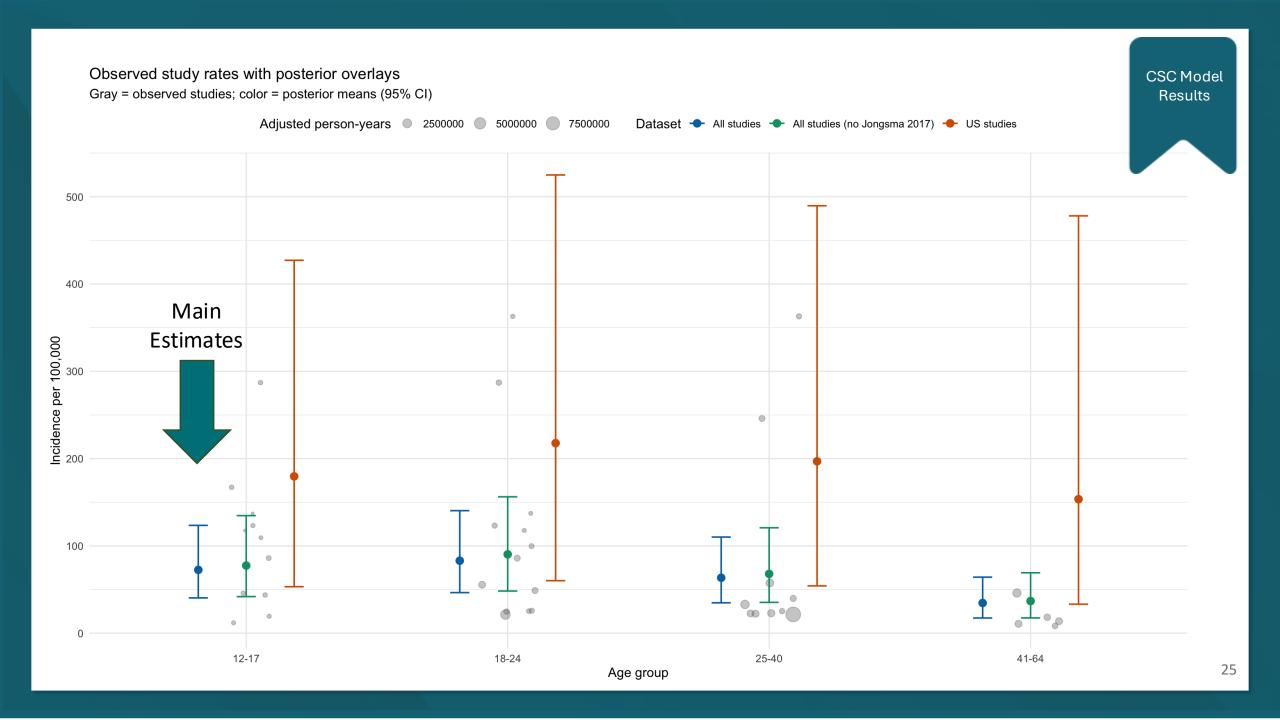
Study

only populations


Brazil

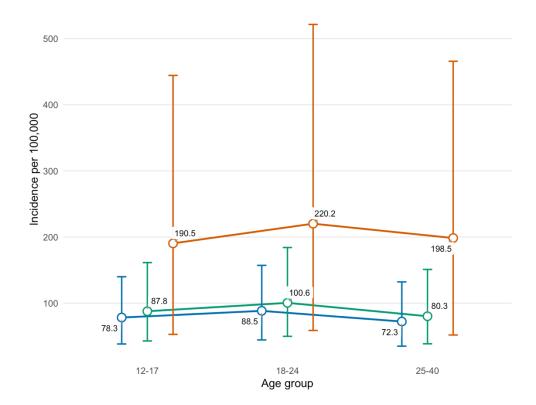
England

Meta-analysis including data from 6 countries
North-eastern Italy
Washington


Studies contributed to each relevant age group based on sample size and overlap with the target age range – All Studies

Jongsma et al. 2017 contributes a large amount to 18–40-year-old estimates

Simon et al. 2017 contributes ~30% to 41–64-year-old estimates



Approximately 20% of total person-years contributed by US studies US studies had a higher FEP incidence and considerable variability

Posterior FEP incidence by age group
All studies vs US-only vs All (no Jongsma 2017)

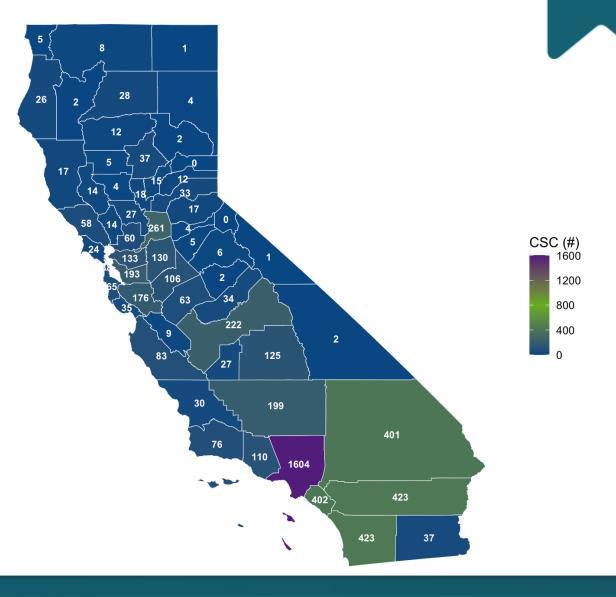
Scenario O All studies O All studies (no Jongsma 2017) US studies

Total Person-years contributed among studies

Age Group	All Studies*	US Studies
12-17	1,847,066	746,803
18-24	8,615,206	1,392,524
25-40	19,764,815	2,831,268
41-64	5,936,376	2,088,966
Total	36,163,464	7,059,561

^{*}Jongsma et al. 2017 contributed 12,900,000 total person-years, so the scenario removing that study had 23,263,464 total person-years

CSC Estimates Statewide


Age Group	Medi-Cal Eligible 12-40 (#)	Estimated CSC - Medi-Cal Eligible	Uninsured <=250% FPL (#)	Estimated CSC - Uninsured
12-17 years	1,677,478	1,217 (678-2,072)	55,493	40 (22-69)
18-24 years	1,596,178	1,325 (742-2,240)	178,342	148 (83-250)
25-40 years	3,314,582	2,105 (1,154-3,651)	439,825	279 (153-484)
41-64 years	3,678,506	1,272 (639-2,362)	584,433	202 (101-375)
Total	10,266,744	5,919 (3,443-9,735)	1,258,089	670 (385-1,113)

CSC Population Estimates by County

Clinical Need for CSC among Medi-Cal eligible individuals 12-64 years of age ranged between 0 (0-0) in Alpine and Sierra to 1,604 (933-2,644) in Los Angeles

Estimated CSC Population by County (Ages 12-64)

Medi-Cal populations only

CSC Model Results

CSC - Conclusions and Limitations

- Conclusions
- We designed a model to estimate the incidence of FEP using data from 12 studies across geographic settings, age groups, and payer types
- These estimates may provide a helpful guide for individuals with clinical need for CSC for FEP
- Population models relying on local data (e.g., program capacity, populations served, and individual-level diagnoses) would arrive at different estimates
- Limited studies available explicitly in Medi-Cal and U.S. populations for some of this age range (2023 Washington State Medicaid Report and Radigan et al. 2019). Other studies included:
 - Mixed payer populations (e.g., Simon et al. 2017)
 - Publicly funded insurance in another country (e.g., Murri et al. 2023)

Any Questions?

"All models are wrong, but some are useful"

-George E. P. Box

In absence of BHP-specific data, these estimates incorporate prior knowledge from the literature or unique county contexts while also capturing uncertainty to inform BHP planning

Remember...

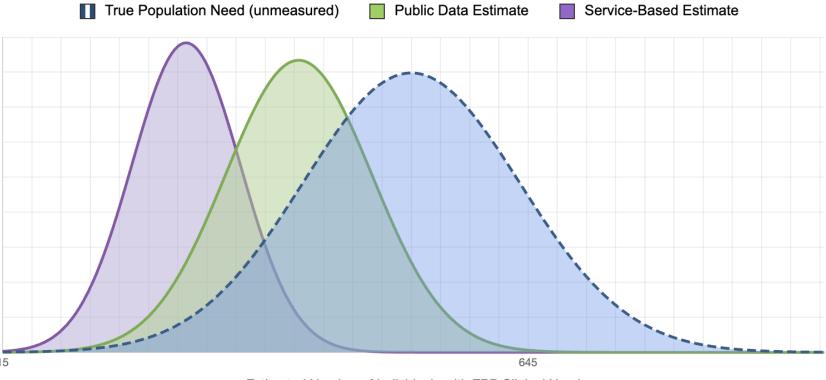
Data is a clue not a conclusion

These estimates are meant to aid with program planning and implementation

They do not identify who you will serve

We have imperfect tools to measure something that is not currently measured

True Population Need


The actual number of individuals in the community with clinical need for FSP services, including those who never access the system

Public Data Estimate

Estimates from general population surveys and epidemiological studies, some fo which are not specific to Medi-Cal and uninsured populations

Service-Based Estimate

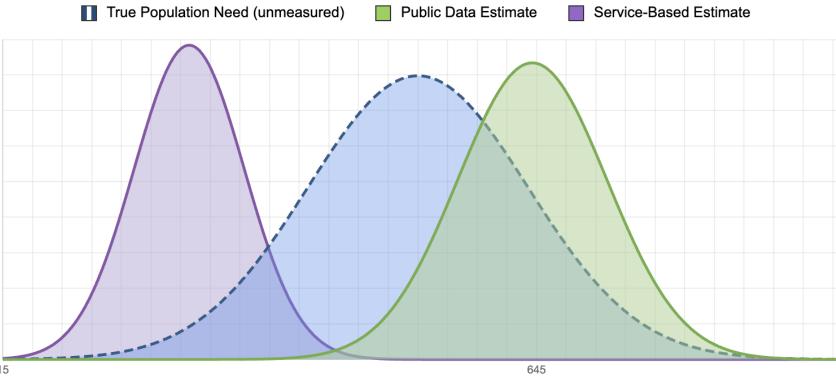
Estimates derived from people currently in services - typically underestimates total need because it only counts those already accessing the system

Estimated Number of Individuals with EBP Clinical Need

^{*}Visual and numbers for illustrative purposes and does not reflect statewide, public, or service-based estimates.

Public data estimates may be higher or lower than true number depending on context

True Population Need

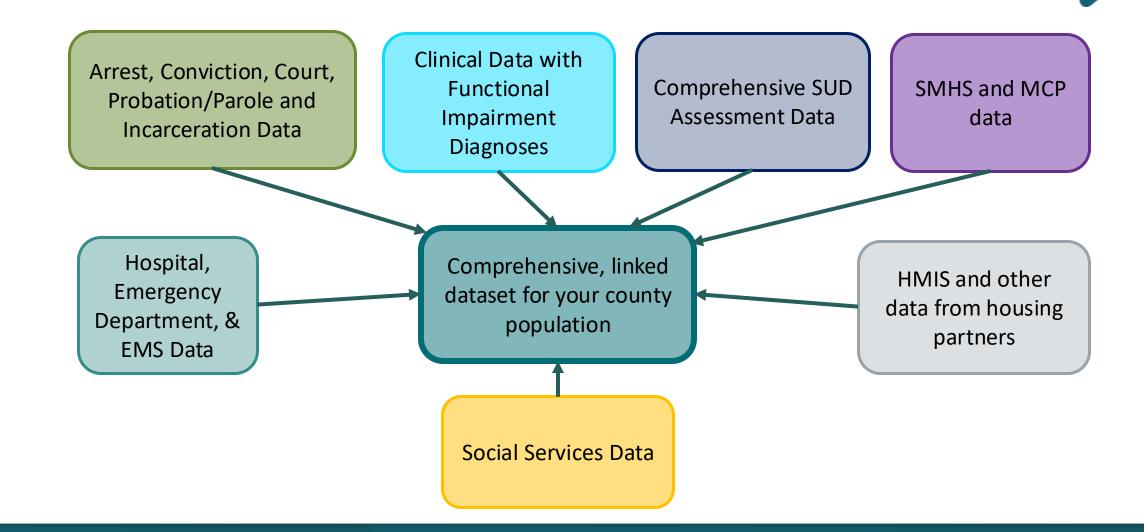

The actual number of individuals in the community with clinical need for FSP services, including those who never access the system

Public Data Estimate

Estimates from general population surveys and epidemiological studies, some of which are not specific to Medi-Cal and uninsured populations

Service-Based Estimate

Estimates derived from people currently in services - typically underestimates total need because it only counts those already accessing the system



Estimated Number of Individuals with EBP Clinical Need

^{*}Visual and numbers for illustrative purposes and does not reflect statewide, public, or service-based estimates.

Although EHR data are limited...what if we had a more complete data system

Interpretation

Evidence-based

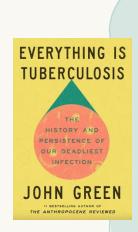
Estimates drawn from peer-reviewed research and publicly available data sources

Incorporates uncertainty

95% credible intervals help capture known uncertainty and relax model assumptions

Payer-specific for BHSA planning

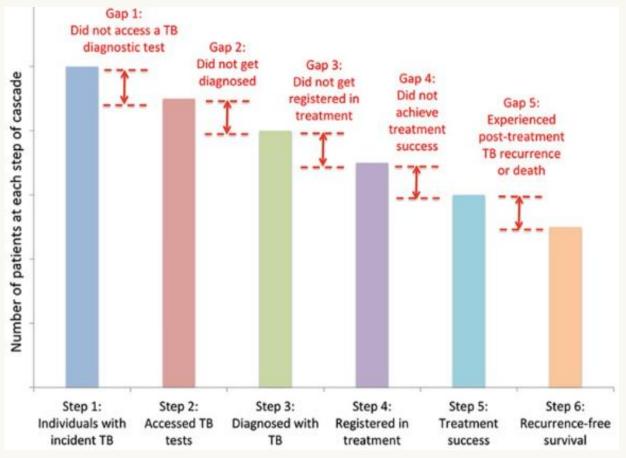
Separate estimates provided for Medi-Cal and uninsured populations to help with BHSA planning


Model estimates can be useful for service planning

- Estimated provider teams needed based on EBP team requirements
- Plan for outreach and anticipated case loads
- For budget planning and expected costs

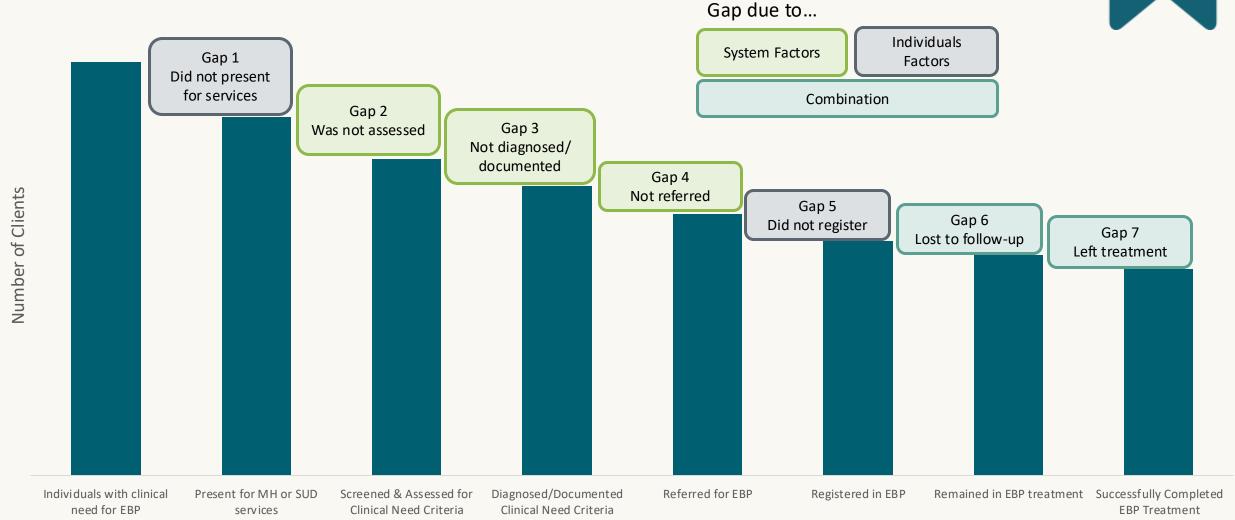
Important Considerations

- Contextualize estimates with local knowledge (e.g., resource capacity, existing services, local partnerships)
- Actual caseloads will depend on may factors (e.g., outreach effectiveness, acceptability)


Clinical Need ≠ Served

Many people who qualify for an intervention may not access it.

Only 43% of those eligible for TB treatment were successfully treated.


TB Care Cascade – General Model for people with any form of active TB in India, 2013



Source: Subbaraman et al. 2019

Behavioral Health EBP Care Cascade

Estimated Population ≠ Served Population

Multiple contributing factors affect the subset of individuals who will access and use these services

Individual Factors*

Not able to access services (e.g., incarceration, hospitalization)

Refusal or inability to engage

Mismatch with available FSP model (e.g., prefers lower-intensity care)

System Factors*

FSP funding available (e.g., 35% of BHSA funds)

Provider shortages/workforce limitations

Program capacity & fidelity constraints

Served Population

Estimated Population with clinical need reduced by Individual Factors and/or System Factors

*The listed components serve as examples and are not comprehensive of all contributing factors.

Any Questions?

Thank You!

Haylea Hannah, PhD, MSPH

Senior Epidemiologist managedcare@calmhsa.org

Questions about the estimates from DHCS or the BHSA IP process? Bhtinfo@dhcs.ca.gov

